
J. Fluid Mech. (2005), vol. 554, pp. 309–322. c© 2005 Cambridge University Press

doi:10.1017/S0022112005006671 Printed in the United Kingdom

309

Transition to turbulent convection in a fluid
layer heated from below at moderate aspect ratio

By T. HARTLEP1†, A. T ILGNER1 AND F. H. BUSSE2

1Institute of Geophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
2Institute of Physics, University of Bayreuth, 95440 Bayreuth, Germany

(Received 2 December 2004 and in revised form 15 June 2005)

Numerical simulations of Rayleigh–Bénard convection in a fluid layer heated from
below between two rigid horizontal boundaries have been performed for Rayleigh
numbers Ra up to 107, Prandtl numbers in the range between 0.7 and 60 and for
aspect ratios Γ up to 20. Periodic boundary conditions in the horizontal plane have
been used. To a considerable extent, the evolution towards turbulent convection at
high values of Ra is governed by processes exhibited by instabilities of steady or time
periodic forms of convection at lower Rayleigh numbers. With increasing Ra , the
properties of convection are increasingly determined by the thermal boundary layers.
The role of mean flows which may be symmetric or antisymmetric with respect to the
mid-plane of the layer is emphasized.

1. Introduction
Thermal convection in fluid layers heated from below has long been a preferred

subject for the study of fluid turbulence under physically realistic conditions. The
property that turbulent eddies can be observed in their evolution in time within the
laboratory frame of reference instead of being swept away by a mean flow, together
with the fact that the temperature field offers convenient additional opportunities for
visualizations and measurements, has made thermal convection an attractive subject
from the experimental point of view. The localized nature of convection flows also
offers many advantages from the theoretical point of view. The most important
properties of turbulent convection can be investigated by restricting the numerical
analysis to relatively small horizontal periodicity intervals or boxes with aspect ratio
of the order unity. Much attention has thus been devoted in recent years to the
goal of reaching high Rayleigh numbers Ra in experiments as well as in numerical
simulations in order to gain an understanding of the asymptotic regime of large Ra .
It is expected that this regime is not only important for applications to convection
in the atmosphere and in stars, but that it will also provide general insights into the
nature of turbulent transport processes.

Some features of turbulent convection, however, cannot be described adequately
when the analysis is restricted to low-aspect-ratio boxes. The fact that in experiments
hot rising and cold descending plumes occur at sidewalls is likely to yield a Nusselt–
Rayleigh number relationship different from that obtained in horizontally extended
layers where plumes occur predominantly in the interior of the layer. There is also

† Present address: Centre for Turbulence Research, Stanford University, Building 500, Stanford,
CA 94305-3035, USA.



310 T. Hartlep, A. Tilgner and F. H. Busse

the question of whether large scale mean flows can be generated by convection, as has
been suggested by Krishnamurti & Howard (1981). The spontaneously selected size
of circulation cells in turbulent convection is known to increase with Ra , at least in
the case of moderate Prandtl numbers. The nature of the network of quasi-stationary
cells is not well understood, even though it appears to persist to asymptotically high
Rayleigh numbers as the observations of mesoscale convection in the atmosphere
and of solar granulation tend to suggest. Questions such as these have motivated the
numerical study presented in this paper.

By using quadratic periodicity intervals in the horizontal plane with typical aspect
ratios up to Γ =10, we hope to gain some understanding of the dependence of
properties on the aspect ratio and to provide a basis for extrapolations to the case of
infinitely extended layers. In fact, Γ = 10 may not be sufficient for this purpose and
Γ =20 has been used for this reason in some cases. Of course, the limits of available
computer capacity restrict the regime of accessible Rayleigh numbers the more the
higher the aspect ratio is chosen. While in most cases numerical simulations have
been carried out up to Ra = 106, in several instances Ra = 107 has been reached.

The paper is organized as follows. After the formulation of the mathematical
problem and a brief introduction to the numerical methods in § 2, an overview of
the convection structures in dependence on the Prandtl number is given in § 3. Here,
and in the following sections, we shall refer frequently to earlier work in which the
evolution of convection patterns through sequences of bifurcations from rolls to three-
dimensional steady and time-dependent forms of flow has been investigated. In fact,
many of the characteristic features of turbulent convection found in the numerical
simulations can be traced to properties of convection introduced by bifurcations.
Examples of this kind are exhibited by the mean flow properties discussed in § 4 and
similar relationships can be found in some aspects of the convective heat transport
which is described in § 5. Concluding remarks are made in § 6.

2. Mathematical formulation of the problem
We consider an infinitely extended horizontal fluid layer of height d between

two rigid plates of which the upper one is kept at the temperature T0 and the
lower one at the temperature T0 + �T . A Cartesian coordinate system will be used
with the acceleration due to gravity g acting in the negative z-direction. Periodic
boundary conditions are imposed in x- and y-directions with periodicity lengths
lx and ly . The aspect ratio Γ is defined as Γ = lx/d = ly/d . Using d , d2/κ , �T as
units of length, time and temperature, respectively, where κ is thermal diffusivity, we
obtain non-dimensional equations for the velocity field v(r, t) and the temperature
T (r, t). Since we employ the Boussinesq approximation, two dimensionless control
parameters enter the equations: the Rayleigh number Ra = gαd3�T/(κν) and the
Prandtl number Pr = ν/κ , where ν is the kinematic viscosity of the fluid and α is
its coefficient of thermal expansion. When the fluid is at rest, the (dimensionless)
temperature depends only on z and varies as T (z = 0) − z. In the general case, it is
convenient to specify the temperature through the deviation Θ from the static profile:
T (r, t) =Θ(r, t) + T (z = 0) − z. The equations of motion for v(r, t) and Θ(r, t) are:

∂tv + (v · ∇)v = −∇π + Pr ∇2v + Ra Pr Θ ẑ, (2.1)

∇ · v = 0, (2.2)

∂tΘ + v · ∇Θ − v · ẑ = ∇2Θ, (2.3)
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where ẑ is the unit vector in z-direction and terms that can be written as gradients
have been combined into ∇π. The velocity field can be represented uniquely by a
poloidal scalar φ(r, t), a toroidal scalar ψ(r, t) and a mean flow U(z, t),

v = ∇ × ∇ × φ ẑ + ∇ × ψ ẑ + U, (2.4)

where φ and ψ are bounded functions with vanishing average over the (x, y)-plane.
The boundary conditions are given by

Θ = 0, v = 0 at z = 0, 1. (2.5)

Equations of motion for φ, ψ and U are obtained from the z-component of the
curl of the curl of (2.1), the z-component of the curl of (2.1), and the average over
horizontal planes of (2.1), respectively,

∇4∆2φ − �2Θ = ( ẑ · ∇ × (∇ × (v · ∇)v) + ∂t∇2�2φ)Pr−1, (2.6)

∇2�2ψ = ( ẑ · ∇ × (v · ∇)v + ∂t�2ψ)Pr−1, (2.7)(
∂2

zz − Pr−1∂t

)
U = −∂z�2Φ(∇2∂zΦ + ∇Ψ × ẑ)/Pr, (2.8)

where ∇2 is given by ∇2 = ∇ − ẑ ẑ · ∇ and �2 denotes the horizontal Laplacian,
�2 = ∂2

xx + ∂2
yy .

A spectral method (Moser, Moin & Leonard 1983; Kerr 1996; Hartlep & Tilgner
2003) is used to solve (2.3) and (2.6) numerically. Space is discretized with Chebychev
polynomials in the z-direction and with Fourier modes in the x- and y-directions. De-
aliasing with the 2/3-rule is implemented. The time-marching procedure is a second-
order Adams–Bashforth scheme for the advection and buoyancy terms coupled to
a Crank–Nicolson scheme for the diffusive terms. An adaptive time step is used to
speed up the transients. All computations have been started from random noise as
initial conditions, and have been run for several tens of the convection time scale
τ = (2Ekin)

−1/2, with Ekin being the average kinetic energy density. Spatial resolution
was up to 65 Chebychev polynomials and 5122 grid points in horizontal planes.
The code has been validated by comparing the results with those obtained with a
completely independent Galerkin method (Clever & Busse 1987, 1994).

3. Evolution of convection patterns
Rayleigh–Bénard convection is known for its rich variety of patterns which appear

to persist even into the regime of fully developed turbulence, as the examples of
cloud patterns in the atmosphere and of solar granulation indicate. Many of the
characteristic patterns are associated with special boundary conditions or deviations
from the Boussinesq approximation which will not be considered in this paper. For
numerical simulations of turbulent convection in the presence of strongly temperature-
dependent viscosity at infinite Prandtl number see Balachandar, Yuen & Reuteler
(1996). Here, we shall focus first on patterns in the case of Pr = 0.7 and then proceed
to moderately high Prandtl numbers in the range of 7 � Pr � 60.

3.1. Pattern evolution for Prandtl numbers of the order unity

The characteristic changes occurring in the spatio-temporal structure of convection
for Pr ≈ 1 are evident from figures 1 and 2. The onset of convection occurs in the form
of straight rolls with a wavenumber q close to the critical value 3.116. In the present
case of discrete wavenumbers determined by the finite periodicity interval Γ = 10,
q =3.142 was found. In quantitative agreement with experimental observations (Willis,
Deardorff & Somerville 1972), a rapidly decreasing wavenumber with increasing
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Figure 1. Snapshots of the temperature in the mid-plane (z = 0.5) for Pr =0.7, Γ = 10 and
(a) Ra =4 × 103, (b) 8 × 103, (c) 1.6 × 104, (d) 3.2 × 104, (e) 105 and (f ) 2.5 × 105. Cold and
hot fluid is shown in white and black, respectively.
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Figure 2. Mid-plane temperatures for (a) Ra = 106 and (b) Ra = 107, and, (c) for the case
of Ra =106, the corresponding velocity field in the (x, z)-plane at y = 1.75. In both cases, a
Prandtl number of Pr = 0.7 and an aspect ratio of Γ =10 was used.

Ra can be observed when simulations are started with random initial conditions.
Accordingly, rolls with q = 2.0 are seen in figure 1(a). The oscillatory instability sets
in at about Ra = 5.5 × 103 for this wavenumber (Clever & Busse 1974) and a pattern
of sinusoidal displacements propagating along the axis of the rolls is realized as
indicated in figure 1(b). As their amplitude increases, these waves become unstable
to tertiary instabilities (Clever & Busse 1987) and a transition to a chaotic regime of
convection occurs. In spite of the increasing complexity of the small-scale motions,
a large scale arrangement of basic rolls with a wavelength of half the aspect ratio
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Figure 3. Horizontal distribution of the instantaneous vertically averaged temperature for
Rayleigh numbers Ra = 3.2 × 104, 105, 5 × 105 and 106 (left to right) and Prandtl numbers
Pr = 7, 15, 30 and 60 (top to bottom). The aspect ratio is Γ = 10 for all simulations except for
the case Ra = 3.2 × 103, Pr = 7 (top left), in which Γ = 20.

can still be seen most of the time. Sometimes the arrangement assumes the form of
square cells as in the case of Ra = 107 in figure 2. The vertical cross-section shown in
figure 2(c) demonstrates that the circulation corresponding to the horizontal pattern
does indeed pass through the entire depth of the layer. An analysis of the average
size of these large-scale structures and its dependence on Ra and Pr can be found
in Hartlep, Tilgner & Busse (2003).

3.2. Pattern evolution at moderately high Prandtl numbers

In figure 3, the evolution of convection structures with increasing Rayleigh number is
shown for four different Prandtl numbers between 7 and 60. While convection starts
in the form of rolls at the critical value Ra = 1708, various instabilities have occurred
by the time the lowest value of Ra used for the figure has been reached. For a detailed
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Figure 4. Snapshots of the temperature field in two horizontal planes, (a) z = 0.18 and
(b) z = 0.82, for a simulation with Ra =105, Pr = 15 and Γ =10.

discussion of these instabilities in the relevant range of Prandtl numbers, see Bolton,
Busse & Clever (1986). It is surprising to see convection in the form of polygonal
cells in the cases of Pr = 7 and Pr =15, since the occurrence of hexagonal cells
is usually associated with deviations from the Boussinesq approximation which are
absent in our computations. Moreover, cells with both signs of vertical motion in the
cell centre can be seen in the case Pr = 7. That only cells with descending motion in
the centre are visible in the plot for Pr = 15 is caused by the small periodicity interval.
The four-times larger horizontal area used in the case Pr = 7 appears to be required
in order to provide sufficient space for coexisting cells of both signs. Note that a
convection roll separates the two types of cells, just as in the case of the experimental
observations of Assenheimer & Steinberg (1996). This appearance of coexistent types
of convection structures is in agreement with the property that there exists an
intermediate range of Rayleigh numbers where hexagonal convection cells of both
signs as well as rolls represent stable steady solutions (Clever & Busse 1996).

For Pr = 60, the tendency towards polygonal convection cells is no longer clearly
evident, and only the bimodal structure of convection is visible which is caused by
the superposition of smaller cross-rolls onto the basic rolls. This type of convection
has been studied theoretically (Busse 1967; Frick, Busse & Clever 1983) as well as
experimentally (Busse & Whitehead 1971) and is well understood.

While the convection flows are approximately steady for Ra = 3.2 × 104, a time
dependence, especially of the small-scale structures, develops on the way to the next
higher value of Ra . The typical patterns found at this and even higher values of Ra
have been called spoke patterns (Busse & Whitehead 1974) because the convection
structure appears to be governed by central plumes which are fed by spoke like ridges
of hot and cold fluid in the respective boundary layers. The fact that the ‘spokes’ do
not penetrate through the entire layer is evident from patterns close to the upper and
lower boundaries shown in figure 4 for the particular case of Pr =15 and Ra = 105.

4. Mean flows generated by convection
There are several mechanisms through which laminar convection may generate

mean flows, i.e. flows without an (x, y)-dependence which are described by the
component U of the velocity field (2.4). At Prandtl numbers of the order unity, a
mean flow symmetric with respect to z = 0.5 is generated along the axis of convection
rolls after the oscillatory instability has set in and wavy distortions travelling along the
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Figure 5. (a) Contour plots of vertical velocity in the mid-plane and (b) temperature in the
(x, z)-plane at y = 1 at four different times as indicated by the arrows in (c) (from left to right)
in a simulation with Ra = 6.4 × 104, Pr = 7, Γx = lx/d = 2, Γy = ly/d = 3. Solid and broken lines
indicate positive and negative values, respectively. (c) also shows time series of the mean flow
with solid and dotted lines denoting the symmetric parts Si = 〈

∫ 1

0 Ui dz〉x,y (i = x, y), and with
dashed and dash-dotted lines denoting the antisymmetric parts Ai = 〈

∫ 1

0 2(1 − 2z)Ui dz〉x,y

(i = x, y), respectively. Since solid, dotted, and dash-dotted lines coincide with zero, only Ax

exhibits a finite value.

rolls have appeared (Clever & Busse 1989). At higher Prandtl numbers, a steady mean
flow which is also symmetric with respect to z = 0.5 is found after the instability of rolls
in the form of travelling blob oscillations has set in (Clever & Busse 1995). Travelling
blob oscillations are rarely seen, however, in experiments or numerical simulations. An
oscillatory mean flow which is antisymmetric with respect to z = 0.5 is generated by the
wavy oscillatory instability of bimodal convection (Clever & Busse 1994). The second-
ary small, wavelength rolls which are superimposed at a right angle onto the basic rolls
tilt back and forth in the direction of the axis of the basic rolls. Because of the periodic
tilt, a Reynolds stress is generated with the same period. The tilt is clearly evident in
the plots of figure 5 which also shows the mean flow generated by this mechanism.

According to this discussion symmetric mean flows along the basic rolls must be
expected for Prandtl numbers of the order unity or less, while an antisymmetric oscil-
lating mean flow should typically be seen at higher Prandtl numbers. This expectation
is borne out to some extent by the results of the numerical simulations. In figure 6(a),
the Rayleigh number is sufficiently low such that a regular convection pattern is still
realized, as is also evident from the corresponding plot of figure 1. Besides the expected
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Figure 6. Time series of mean flow components for (a) Ra = 8 × 103 and (b) Ra = 106, both
for Pr = 0.7, Γ =10. As in figure 5, solid and dotted lines indicate symmetric parts, dashed
and dash-dotted lines indicate antisymmetric parts of the mean flow velocities Ux and Uy ,
respectively.

steady symmetric mean flow along the roll axis, there also exists an oscillatory anti-
symmetric mean flow with a period twice as long as the period of the wave travelling
along the rolls. The antisymmetric mean flow is obviously caused by the onset of
the asymmetric instability of travelling-wave convection (Clever & Busse 1987). This
instability introduces a tilt in the streets of rising and descending motion and thus
creates a Reynolds stress. Since the frequency ω2 of the asymmetric instability tends to
phase lock with the symmetric oscillation (frequency ω1) such that ω2 = ω1/2, the ob-
served period of the antisymmetric oscillatory mean flow must be expected. It should
be mentioned that the transition from symmetric oscillatory convection to asymmetric
oscillatory convection was first observed in the numerical simulations of Lipps (1976).

As the Rayleigh number is increased and a turbulent state of convection is realized,
the antisymmetric component of the mean flow increases relative to the symmetric
one, as is evident from the time series of figure 6. It is also evident from this figure
that symmetric as well as antisymmetric components of the mean flow tend to vanish
in the time average in the turbulent case.

In the case of larger Prandtl numbers, the antisymmetric mean flow appears to
dominate in the entire Rayleigh number regime that has been investigated. Although
the large-scale convection pattern at Ra = 3.2 × 104 is nearly steady, as shown in the
upper left plot of figure 3, the antisymmetric mean flow exhibits a rather chaotic time
dependence with strong oscillations with frequencies ω of the order 70 (based on the
thermal time scale). This property indicates the origin of this mean flow from the
small wavelength component of convection which is also strongly time dependent.
The typical frequency ω of the order 102 agrees with that found for the wavy
oscillatory instability of bimodal convection at comparable values of Ra (Clever &
Busse 1994). The frequency is expected to increase in proportion to Ra2/3. An increase
of the characteristic frequency, albeit a smaller one, is indeed found in the numerical
simulations. Except for this change in the frequency spectrum, the results at Ra = 106

are remarkably similar to those at Ra =3.2 × 104, at least as far as the mean flow
properties are concerned.

The results for the dependence of the mean flow energies on the Rayleigh number
are summarized in figure 7 for the cases Pr = 0.7 and Pr = 7. It is remarkable how
little the distribution of the kinetic energy of convection on the various components
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Figure 8. Aspect-ratio dependence of mean flow energies for Pr = 0.7 (diamonds) and Pr = 7
(triangles), both at Ra = 106, and for the case Pr = 0.7, Ra = 107 (squares). Open and filled
symbols denote the kinetic energy of the symmetric and antisymmetric parts of the mean flow,
again as fractions of the total kinetic energy.

of the velocity field changes with Ra in the case Pr = 0.7. Only the energy fractions
of the toroidal component and of the antisymmetric mean flow increase slightly with
Ra . In the case Pr = 7, the energies of the mean flow and of the toroidal component
of the velocity field are rather minute at low values of Ra; but they increase fairly
rapidly such that they approach for Ra = 106 the values found in the case Pr =0.7.

It must be kept in mind that the mean flow is strongly dependent on the aspect
ratio Γ . In fact, it must be expected that the mean flow vanishes in the limit of infinite
aspect ratio since, in that limit, the mean flows generated by convection patches of
all possible orientations tend to be averaged out. The mean flow as discussed in this
section reflects in that limit the properties of large-scale horizontal motions. The time
dependence and the symmetry with respect to the mid-plane of the layer of the mean
flows studied in low-aspect-ratio cases are thus of general importance. Some results
on the aspect ratio dependence are provided by figure 8. It would be of interest to
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Figure 9. Nusselt number as a function of Rayleigh number for Γ = 10 and Pr = 0.7
(diamonds), Pr =7 (triangles) and Pr =30 (squares). Values shown for Pr = 0.7 and Pr = 7
are shifted by + 0.2 and + 0.1, respectively.

proceed beyond the limit of Γ = 10 at Ra = 107 in order to understand better the
spectral properties of large-scale motions induced by convection, but because of the
present limits of computer capacity, this task has to be postponed for future studies.

Before closing this section we wish to mention that two-dimensional mechanisms
of mean flow generation by convection rolls have been considered for a long time.
For an early review see Busse (1983). Motivated by the observations of mean flows
in their experiment (Krishnamurti & Howard 1981), Howard & Krishnamurti (1986)
developed a simple theory. Owing to a small initial tilt, convection rolls generate a
mean shear which in turn enhances the tilt. This instability mechanism is the same
as that analysed for forced convection rolls by Busse (1972) or as the mean-flow
instability in the rotating annulus system (Busse 1983, 1986). In the case of non-
rotating Rayleigh–Bénard convection, however, it has always been found (Bolton et al.
1986) that the mean flow instability envisaged by Howard & Krishnamurti (1986)
is preceded by transitions from two-dimensional to three-dimensional convection.
This is consistent with the result that large-amplitude mean flows as observed
by Krishnamurti & Howard (1981) have not been found in the present simulations.

5. Heat transport by convection
The efficiency of the convective heat transport is commonly measured by the Nusselt

number which is defined as the ratio of the heat transports with and without con-
vection. Results for the Nusselt number Nu as a function of Ra are shown in figure 9.
It appears that for the regime of Rayleigh numbers 105 < Ra < 107, the power-law
dependence Nu ∼ Ra2/7 provides a good fit for the numerical data. Although this
power law has been discussed in the literature for a while, we have used it here only
for convenience and because it has been used before for representing experimental
as well as numerical data. For a recent discussion of scalings, see Grossmann &
Lohse (2000, 2001). The results of figure 9 agree quite well with the relationship
Nu =0.186Ra0.276 found by Kerr (1996) for Pr = 0.7 and for a similar regime of
Rayleigh numbers. Additional computed values of the Nusselt number for different
values of Pr are presented in Kerr & Herring (2000). It is worth noting that these
authors also find that Nu is lower by about 7 % for air (Pr = 0.7) than for water
(Pr = 7) at Ra = 107, as can be seen from figure 9. For higher Prandtl numbers, the
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are for Ra =106, Pr = 0.7 (diamonds) and Pr = 7 (triangles), and Ra =107, Pr = 0.7 (squares).

dependence of Nu on Pr seems to disappear since no significant difference between
the values at Pr = 7 and Pr = 30 can be discerned.

Of particular interest is the dependence of the heat transport on the aspect ratio.
Small aspect ratios favour the vertical component of the velocity field relative to the
horizontal components and thus tend to enhance the heat transport. This effect is seen
in figure 10, at least for Γ < 5. For larger values of Γ , no systematic dependence can
be discerned, but the fact that the Nusselt number assumes maxima for certain values
of the aspect ratio does not necessarily reflect insufficient numerical convergence.
It is more likely that certain aspect ratios provide an especially good fit for the
arrangement of convection rolls.

The effectiveness of the convective heat transport is mainly limited by processes in
the thermal layers at the horizontal boundaries. Regions of high |∂Θ/∂z| at z = 0, 1
provide strong heat transfers between fluid and boundary, while regions of low
|∂Θ/∂z| correspond to larger thicknesses δ of the thermal boundary layers and are
thus prone to buoyancy-driven instabilities since the local Rayleigh number corres-
ponding to Raδ3/2 is likely to exceed a critical value. According to the criterion
of Busse (1967), the thermal boundary becomes unstable when the quantity NuRa−1/3

decreases with increasing Ra as is always the case in the considered Rayleigh-number
regime according to the heat transport results of figure 10. It is of interest to compare
the regions of high and low |∂Θ/∂z| through a plot of the quantity〈

∂Θ/∂z − 〈∂Θ/∂z〉
|∂Θ/∂z − 〈∂Θ/∂z〉|

〉
at z = 0 (5.1)

as a function of Ra and Pr , as has been done in figure 11. In (5.1) the angular
brackets indicate the average over the (x, y)-plane as well as over time. Positive values
of the quantity (5.1) indicate that the regions of small |∂Θ/∂z| exceed the regions of
high |∂Θ/∂z| since ∂Θ/∂z is always negative at the boundaries. Since high values of
|∂Θ/∂z| at the boundaries are usually caused by strong flows towards the respective
boundary region, we expect a positive (negative) correlation of expression (5.1) with
the quantity 〈vz/|vz|〉 close to z = 0 (z = 1). Such a correlation appears to be realized
at high values of Ra in the cases Pr =0.7 and Pr =30, according to figure 12. In
the case Pr = 7, the situation is less clear because the function 〈vz/|vz|〉 is not even
antisymmetric in z at the intermediate Rayleigh numbers of the order 104 to 105
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Figure 11. Rayleigh-number dependence of quantity (5.1) for Γ = 10 and Pr =0.7
(diamonds), Pr =7 (triangles) and Pr = 30 (crosses).
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Figure 12. Ra-dependence of the quantity 〈vz/|vz|〉 close to the lower boundary for Γ = 10
and Pr = 0.7 (diamonds), Pr = 7 (triangles) and Pr = 30 (crosses).

where convection in the form of asymmetric square cells appears to be dominant,
according to the patterns shown in figure 3.

The dependence on z of the quantity 〈vz/|vz|〉 reveals a persistent and, for turbulent
convection, unexpected distinction between the dynamics at high and low values of
the Prandtl number, as is evident from figure 13. While for values of Pr of the order
unity or less the distribution of high and of low values of |vz| appears to be dominated
by plumes impinging with relatively high velocities onto the boundaries, a different
situation is found for Prandtl numbers of order 7 and higher. Here, large values of |vz|
are associated with thermals moving away from the boundary. This distinction is well
known for laminar convection rolls at low Rayleigh numbers as discussed, for example,
in Busse (1989). This effect is indicated by the curves shown in figure 13 which reflect
the inclination of the elliptical streamlines of the rolls towards the vertical symmetry
plane of rising (descending) motion for low (high) values of Pr which causes the
corresponding concentration of rising (descending) flow in the upper (lower) half of
the layer. It is surprising that this distinction between high Pr and low Pr rolls found at
low values of Ra persists close to the boundaries far into the turbulent regime. It thus
represents another indication that convection in the thermal boundary layers reflects
properties of convection in the entire layer at corresponding lower values of Ra .
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Figure 13. Time-averaged profiles of 〈vz/|vz|〉(z) for (a) Ra = 4 × 103 and (b) Ra = 107.
Diamonds, triangles and crosses represent Prandtl numbers Pr = 0.7, 7 and 30. Again, Γ = 10.

6. Concluding remarks
The numerical simulations presented in this paper have covered only a limited range

of Rayleigh and Prandtl numbers. Since the goal has been to simulate convection in
large-aspect-ratio layers, it was felt that the horizontal periodicity interval should be
chosen sufficiently large to allow for at least two roll pairs to be realized. Even though
the computations have been carried out to values of Ra up to 107, the dynamical
processes found at these high Rayleigh numbers still reflect the processes introduced
by the instabilities of rolls at values of Ra of the order of 104 to 105. In particular,
the properties of large-scale horizontal flows can be understood on this basis.

The dynamics of high-Rayleigh-number convection is governed primarily by the
properties of the thermal boundary layers. The similarity of the secondary convection
processes in these layers with convection in the entire layer at lower Rayleigh numbers
suggests the beginning of an evolution towards a hierarchy of boundary layers as Ra
tends to infinity. Very high Rayleigh numbers are accessible only in experimental
investigations because of the limited numerical resolution that is affordable on
currently available computers. Detailed measurements of properties of the thermal
boundary layers require large dimensions of the experimental apparatus such as those
of the convection chamber that has become available as the ‘Barrel of Ilmenau’ with
its height of 7 m (Resagk et al. 2002). It is hoped that it will be possible to achieve
a detailed contact between the results of this and other experiments in the case of
moderate to large aspect ratios and the simulations reported in this paper.

The support of the Deutsche Forschungsgemeinschaft for the research reported in
this paper is gratefully acknowledged.
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